Finite asymptotic dimension for CAT(0) cube complexes

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

finite asymptotic dimension

Generally we use definitions and notation as in [D]. In particular, (W,S) is a finitely generated Coxeter system, C is a building with Weyl group W , |C| is the Davis realization of C. We will, however, confuse the Coxeter group and its abstract Coxeter complex, denoting both by W ; in particular, |W | denotes the Davis complex. The W -valued distance in C will be denoted δC , while δ will be t...

متن کامل

20 08 Buildings have finite asymptotic dimension

Generally we use definitions and notation as in [D]. In particular, (W,S) is a finitely generated Coxeter system, C is a building with Weyl group W , |C| is the Davis realization of C. We will, however, confuse the Coxeter group and its abstract Coxeter complex, denoting both by W ; in particular, |W | denotes the Davis complex. The W -valued distance in C will be denoted δC , while δ will be t...

متن کامل

On Complexes of Finite Complete Intersection Dimension

We study complexes of finite complete intersection dimension in the derived category of a local ring. Given such a complex of complexity c, we prove that the thick subcategory it generates contains complexes of all possible complexities at most c. In particular, we show that such a complex is virtually small, answering a question raised by Dwyer, Greenlees and Iyengar.

متن کامل

Stallings’ folds for cube complexes

We describe a higher dimensional analogue of Stallings’ folding sequences for group actions on CAT(0) cube complexes. We use it to give a characterization of quasiconvex subgroups of hyperbolic groups that act properly co-compactly on CAT(0) cube complexes via finiteness properties of their hyperplane stabilizers.

متن کامل

The Novikov conjecture and groups with finite asymptotic dimension ∗

Recall that the asymptotic dimension is a coarse geometric analogue of the covering dimension in topology [14]. More precisely, the asymptotic dimension for a metric space is the smallest integer n such that for any r > 0, there exists a uniformly bounded cover C = {Ui}i∈I of the metric space for which the rmultiplicity of C is at most n + 1, i.e. no ball of radius r in the metric space interse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geometry & Topology

سال: 2012

ISSN: 1364-0380,1465-3060

DOI: 10.2140/gt.2012.16.527