Finite asymptotic dimension for CAT(0) cube complexes
نویسندگان
چکیده
منابع مشابه
finite asymptotic dimension
Generally we use definitions and notation as in [D]. In particular, (W,S) is a finitely generated Coxeter system, C is a building with Weyl group W , |C| is the Davis realization of C. We will, however, confuse the Coxeter group and its abstract Coxeter complex, denoting both by W ; in particular, |W | denotes the Davis complex. The W -valued distance in C will be denoted δC , while δ will be t...
متن کامل20 08 Buildings have finite asymptotic dimension
Generally we use definitions and notation as in [D]. In particular, (W,S) is a finitely generated Coxeter system, C is a building with Weyl group W , |C| is the Davis realization of C. We will, however, confuse the Coxeter group and its abstract Coxeter complex, denoting both by W ; in particular, |W | denotes the Davis complex. The W -valued distance in C will be denoted δC , while δ will be t...
متن کاملOn Complexes of Finite Complete Intersection Dimension
We study complexes of finite complete intersection dimension in the derived category of a local ring. Given such a complex of complexity c, we prove that the thick subcategory it generates contains complexes of all possible complexities at most c. In particular, we show that such a complex is virtually small, answering a question raised by Dwyer, Greenlees and Iyengar.
متن کاملStallings’ folds for cube complexes
We describe a higher dimensional analogue of Stallings’ folding sequences for group actions on CAT(0) cube complexes. We use it to give a characterization of quasiconvex subgroups of hyperbolic groups that act properly co-compactly on CAT(0) cube complexes via finiteness properties of their hyperplane stabilizers.
متن کاملThe Novikov conjecture and groups with finite asymptotic dimension ∗
Recall that the asymptotic dimension is a coarse geometric analogue of the covering dimension in topology [14]. More precisely, the asymptotic dimension for a metric space is the smallest integer n such that for any r > 0, there exists a uniformly bounded cover C = {Ui}i∈I of the metric space for which the rmultiplicity of C is at most n + 1, i.e. no ball of radius r in the metric space interse...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2012
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2012.16.527